Wildlife camera monitoring of a Norwegian alpine carnivore guild 2011-2020

サンプリング イベント
最新バージョン Norwegian Institute for Nature Research により出版 10月 27, 2023 Norwegian Institute for Nature Research
公開日:
2023年10月27日
ライセンス:
CC-BY 4.0

DwC-A形式のリソース データまたは EML / RTF 形式のリソース メタデータの最新バージョンをダウンロード:

DwC ファイルとしてのデータ ダウンロード 13,563 レコード English で (3 MB) - 更新頻度: not planned
EML ファイルとしてのメタデータ ダウンロード English で (17 KB)
RTF ファイルとしてのメタデータ ダウンロード English で (15 KB)

説明

Daily aggregated wildlife camera trap data from alpine regions in south-central Norway from 2011 to 2020. The data stems from several projects which have aimed to document the occurrence of Arctic fox in relation to its most common competitors and predators (red fox, wolverine, golden eagle and white-tailed eagle).

データ レコード

この sampling event リソース内のデータは、1 つまたは複数のデータ テーブルとして生物多様性データを共有するための標準化された形式であるダーウィン コア アーカイブ (DwC-A) として公開されています。 コア データ テーブルには、13,563 レコードが含まれています。

拡張データ テーブルは1 件存在しています。拡張レコードは、コアのレコードについての追加情報を提供するものです。 各拡張データ テーブル内のレコード数を以下に示します。

Event (コア)
13563
Occurrence 
67815

この IPT はデータをアーカイブし、データ リポジトリとして機能します。データとリソースのメタデータは、 ダウンロード セクションからダウンロードできます。 バージョン テーブルから公開可能な他のバージョンを閲覧でき、リソースに加えられた変更を知ることができます。

バージョン

次の表は、公にアクセス可能な公開バージョンのリソースのみ表示しています。

引用方法

研究者はこの研究内容を以下のように引用する必要があります。:

Rød-Eriksen L (2023): Wildlife camera monitoring of a Norwegian alpine carnivore guild 2011-2020. v1.0. Norwegian Institute for Nature Research. Dataset/Samplingevent. https://ipt.nina.no/resource?r=alpine_camera11_20&v=1.0

権利

研究者は権利に関する下記ステートメントを尊重する必要があります。:

パブリッシャーとライセンス保持者権利者は Norwegian Institute for Nature Research。 This work is licensed under a Creative Commons Attribution (CC-BY 4.0) License.

GBIF登録

このリソースをはGBIF と登録されており GBIF UUID: 69e0cd24-c934-45d4-afd3-a28fe3f37e92が割り当てられています。   GBIF Norway によって承認されたデータ パブリッシャーとして GBIF に登録されているNorwegian Institute for Nature Research が、このリソースをパブリッシュしました。

キーワード

Samplingevent; fjellrev; kongeørn; rødrev; havørn; jerv; arctic fox; golden eagle; red fox; white-tailed eagle; wolverine; vulpes lagopus; aquila chrysaetos; vulpes vulpes; haliaeetus albicilla; gulo gulo; camera trap; alpine; Norway

連絡先

Lars Rød-Eriksen
  • メタデータ提供者
  • 最初のデータ採集者
  • 連絡先
Researcher
Norwegian Institute for Nature Research
NO
Roald Vang
  • メタデータ提供者
Section Manager
Norwegian Institute for Nature Research
Trondheim
NO
Nina Elisabeth Eide
  • 連絡先
Senior Researcher
Norwegian Institute for Nature Research
NO

地理的範囲

The data has been collected within four major mountain areas in south-central Norway: Børgefjell (65°11′00″N 13°54′00″E), Blåfjella-Skjækerfjella-Lierne (64°13′00″N 13°06′33″E), Sylan-Kjølifjell-Forollhogna (62°40′45″N 10°47′30″E) and Dovrefjell-Sunndalsfjella (62°23′48″N 9°10′23″E).

座標(緯度経度) 南 西 [62.282, 8.249], 北 東 [65.42, 14.561]

生物分類学的範囲

All positive camera trap observations were identified to species. Both the blue and white morph of the Arctic fox was detected, but aggregated to detection/non-detection of the species. Eagle observations were reviewed by experts for correct species classification.

Species Haliaeetus albicilla (White-tailed eagle), Aquila chrysaetos (Golden eagle), Gulo gulo (Wolverine), Vulpes lagopus (Arctic fox), Vulpes vulpes (Red fox)

時間的範囲

開始日 / 終了日 2011-03-01 / 2020-05-05

プロジェクトデータ

The Norwegian Institute for Nature Research (NINA) has monitored the endangered Arctic fox in Norway closely for the past 20 years. As part of several projects aimed to increase our understanding of Arctic fox distribution and population dynamics, as well as the interaction between Arctic fox and potential competitors and predators, wildlife camera monitoring at simulated carcasses was utilized as a non-invasive method from 2011. A total of 52 wildlife cameras were deployed in four mountain regions with documented occurrence of Arctic fox. The cameras were active from March to May each year, as this a time when the Arctic fox is highly active due to breeding and denning.

タイトル Monitoring of Arctic fox in alpine areas of south-central Norway
ファンデイング Data collection was funded by the Norwegian Environment Agency (Ecosystem Børgefjell, grant no. 20087419) and the Scandinavian EU/InterReg-projects Felles Fjellrev I and II (grant no. 20200939). Parts of the image processing was done through the project ECOFUNC funded by the Norwegian Research Council (grant no. 244557/E50).
Study Area Description The study was carried out within four mountain regions in south-central Norway; Børgefjell (65°11′00″N 13°54′00″E), Blåfjella-Skjækerfjella-Lierne (64°13′00″N 13°06′33″E), Sylan-Kjølifjell-Forollhogna (62°40′45″N 10°47′30″E) and Dovrefjell-Sunndalsfjella (62°23′48″N 9°10′23″E). Common characteristics of the study regions are that they represent historical breeding grounds for the Arctic fox (from the forest line and upwards), and that they all contain varying densities of resource competitors such as the red fox, and predators such as the wolverine, golden eagle and white-tailed eagle. Typical prey species for the carnivore guild include Norwegian lemming Lemmus lemmus, vole Microtus spp. and Myodes spp., mountain hare Lepus timidus, ptarmigan Lagopus spp. and reindeer Rangifer tarandus. Conservation actions, such as translocation of individuals from captive breeding, supplementary feeding and culling of competitors (red fox) were carried out in all regions except for Børgefjell (control area).
研究の意図、目的、背景など(デザイン) Camera traps were placed semi-randomly (adjusted for topography) above the tree line, with an average of 10 kilometers between each camera, within each mountain region in 2011. Cameras were placed at the same location in each subsequent year. A total of 52 camera traps were utilized, and were active from approximately 15th of March to 15th of May each year, although with some variation in the number of active camera traps and the duration of trapping between years. Cameras were mounted on a wooden pole about 1.5 meters above the ground/snow level, aimed at the simulated carcass (bait). The carcass consisted of a frozen block of approximately 20 kilograms of scraps and trimmings from locally slaughtered reindeer. Cameras were controlled twice during the active period, and the simulated carcass was replenished after approximately three weeks. All cameras were set to a time lapse of 5 minutes.

プロジェクトに携わる要員:

Nina Elisabeth Eide
Lars Rød-Eriksen

収集方法

Camera traps were set to a 5 minute time lapse interval. Memory cards and batteries were checked by field personnel twice during the sampling period per year (once after three weeks, and then again after 4-5 weeks when the camera was deactivated). Memory cards were sent by mail to, or shared electronically with, the project owner. Images were then copied to a central data server with scheduled backups at NINA. Image processing was carried out by NINA personnel and students attached to related research projects.

Study Extent Sampling was carried out from March to May in each mountain region in each year. The region of Dovrefjell-Sunndalsfjella (62°23′48″N 9°10′23″E; 18 cameras) only had sampling for the first three years (2011-2013), whereas Sylan-Kjølifjell-Forollhogna (62°40′45″N 10°47′30″E; 7 cameras) was sampled from 2011 to 2019. The other two areas, Børgefjell (65°11′00″N 13°54′00″E; 17 cameras) and Blåfjella-Skjækerfjella-Lierne (64°13′00″N 13°06′33″E; 10 cameras), were sampled for the whole study period 2011-2020.
Quality Control Prior to the initial deployment of cameras, NINA developed a standard protocol for camera trap studies. The protocol included sections on how to prepare for the field work (camera configuration, equipment list, geographic information, handling of carcasses etc.) and how to correctly place the cameras (height above ground, angling towards carcass, direction of camera to avoid direct sunlight etc.) for best possible data quality. The protocol also included clear instructions on how to share the images with the project owner. Default equipment were either replaced immediately (if possible) or during the camera checks. During image processing, quality control was performed by doing double processing by two different people of randomly selected parts of the data. Any decrepancies were assessed and the data set corrected. The complete dataset was controlled again through an automated script during compilation and preparation for open publication.

Method step description:

  1. The images stored in the central data server were processed by first applying a script (using the R language) to extract image metadata (filename, date/time, camera serial number, recorded temperature etc.). The resulting text files (CSV) were formatted to a predefined template used to manually process the images. Image processing included recording of both empty and non-empty images, where non-empty images were classified to observed species, as well as registering potential failed pictures (technical failures, snow/ice on camera lens or other failure that made species identification impossible). In addition, the status of the carcass was recorded as either present (available) or absent (consumed). All image metadata were then compiled and stored in a central SQLite database. During compilation, the quality of the data set was verified through checking that each metadata file was formatted uniformly, that data was recorded for the correct parameter, standardization of nomenclature, and verifying correct association between observations and geographical location. The final data set was then aggregated to daily detections/non-detections of each target species and formatted to fit the Darwin Core standard.

追加のメタデータ

Parts of this data set have been utilized in Rød-Eriksen et al. (2022): https://besjournals.onlinelibrary.wiley.com/doi/10.1111/1365-2656.13875

メンテナンス内容 The projects from which the data is collected have ended, and the dataset will not be updated
代替識別子 https://ipt.nina.no/resource?r=alpine_camera11_20